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A method is presented for simulating non-periodic (or periodic) Vlasov systems with dis- 
continuous distribution functions. The method is a hybrid of a standard Vlasov method and 
the Waterbag method; the discontinuity is integrated seperately from the distribution function. 
Sample runs and particle simulation comparison runs are mcluded. ci;l 1985 Academc Press. Inc 

INTRODUCTION 

Most simulations of plasma systems have, until recently, assumed periodic boun- 
dary conditions. While this is satisfactory for some problems, there is a growing 
interest in the simulation of problems having non-periodic boundary conditions. 
Particle simulation methods have been adapted to these problems [I], but particle 
methods are inherently noisy. Finite difference methods are not noisy, and have 
been applied to non-periodic problems [Z, 3,4], but none of these applications 
have addressed the central problem of discontinuities in the Vlasov distribution 
function. These discontinuities are inherent in almost all non-periodic boundary 
conditions. Presented here is a method of surmounting the difficulties inherent in 
using a finite difference grid method to simulate a non-periodic Vlasov system. The 
method is not as flexible as a particle method, but the accuracy is comparable, and 
the particle shot noise is eliminated. 

This method bears a superficial resemblance to the Marker-and-Cell method 151, 
but is quite different both in philosophy and implementation. 

PROBLEM DEFINITION AND APPROACH 

The problem to be solved is the integration of the l-dimensional Vlasov-Poisson 
system in time over a spatial domain of length L, and an infinite velocity domain. 
Specifically, to solve 
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where 

(2) 

E= _ ad+-, 0 
ax 

with appropriate boundary conditions on 4. (Note that the charge of each species is 
absorbed into the distribution function.) For simulation purposes, the velocity 
domain is cut off at -t vmax. The boundary conditions on the distribution function 
used are that the incoming distributions at x = 0, u > 0, and x = L, v < 0, are time- 
independent (or at worst are slightly perturbed around some time-independent dis- 
tributions). The potential difference between x = 0 and x = L is also taken to be 
time-independent (or slightly perturbed). The reasons for the rather strict boundary 
conditions will be explained shortly. 

To simplify the explanation of the method, only one species is considered here, 
and the incoming distribution function at x = L is taken to be zero (i.e., no particles 
coming from the x = L side). The main simulation difficulty is numerical, and arises 
because the distributions entering from the two ends are independent of each other, 
and will therefore almost always give rise to a discontinuity in f(x, u) where they 
meet. In Fig. 1, for example (a particle simulation of an electron diode), the dis- 
tribution function jumps from a large value above a certain characteristic, to zero 
below it. If a finite difference method were used on this distribution function direc- 
tly, the discontinuity would wreak havoc. Depending on the method used, the dis- 
continuity would either be diffused out over many grid cells, or cause overshoots 
resulting in large negative values for the distribution function. This difliculty with 
the discontinuity is solved by extending the distribution function smoothly over the 
entire x-v domain, and following the position of the discontinuity separately. Since 
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FIG. 1. Phase space plot of electrons in a single species diode with space-charge limited current. Dis- 
tribution function jumps suddenly to zero. 
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the distribution function is now smooth, ordinary finite difference methods can be 
used. The extended part of the distribution function is then ignored in calculating 
the charge density, and so does not affect the physics. 

To ensure that no large phase space gradients form in this extended distribution 
function--defeating the purpose of the extension-the boundary condition on the 
artificial part of the distribution function at x = L must be chosen carefully. The 
simplest boundary conditions are a fixed voltage difference q5 between x = 0 and 
x = L, and fixed incoming distribution functions, with the additional constraint that 

f(L -4=f(o,J+$#lm) for v2 >, 2qq+n. (31 

The incoming distributions must, of course, be smooth. These conditions guarantee 
that the extended distribution will be continuous everywhere for the steady state. 
One must then hope that the time-dependent case is not too badly behaved. (It will 
be seen that some bad behavior can be tolerated.) For the specific boundary con- 
ditions chosen for the sample implementation (half-Maxwellian at both ends) con- 
dition (3) can be written 

f(L -4=fP, 4 ew(-MWW. (41 

The position of the discontinuity is followed by a string of test particles, as in the 
Waterbag model [6]. When two test particles drift too far apart, a new one is 
created between them. The entire scheme is diagrammed in Fig. 2. 

Experience with the sample code has shown some pitfalls and limitations which 
seem obvious in retrospect. For instance, in many situations, despite choosing good 
boundary conditions, large gradients in phase space develop as time progresses. 
These cannot be dealt with in the same way as the test particles deal with the 

GRID POINTS 

FIG. 2. Grid layout and test particle scheme. Incoming distribution funcion is specified at grid points 
in dashed boxes. 
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primary discontinuity, so they will give rise to numerical diffusion, and thus be a 
source of inaccuracy. There appears to be little that can be done about this. 
Another problem arises when one wants to vary the voltage across the domain in 
time. In order to prevent large gradients in phase space of the kind just mentioned, 
it is necessary to vary the incoming boundary conditions at x = L, but how to vary 
them so as to minimize the gradients in phase space is unclear. Some of these 
gradients (ripples, for instance) may be diffused away harmlessly, but others may 
cause unacceptable inaccuracy. No work has been done to resolve this problem. 

SAMPLE IMPLEMENTATION 

The Vlasov equation integrator used in this implementation of the method is that 
used by Cheng and Knorr [7]. It is completely analogous to the leap-frog particle 
mover: 

(5) 

fp+‘(x, o)=fP+1’2(X-udt, u), (6) 

where f(x, u) is the Vlasov distribution function, p is the time index, and x, u, and 
E are the position, velocity, and electric field respectively. This scheme yields 
second-order accuracy in time, and reduces the integration to two interpolations, 
which can be performed by any of several methods. 

Many interpolation methods were tried, and it was discovered (empirically) that 
some numerical diffusion was necessary for stability. The best methods are those 
which have diffusion only when large phase-space gradients occur. When there is 
insufficient numerical diffusion, these large gradients apparently interact with the 
x-u grid to produce a numerical instability. Large phase space gradients also cause 
accuracy problems because of the inaccuracy of the test particle integrator. A minor 
shift in the position of the test particles near such a gradient can result in a major 
error when the charge density is computed. Introducing some numerical diffusion at 
steep gradients solves both these problems with a minimum error in other quan- 
tities, such as current and kinetic energy. 

The interpolation schemes finally settled on are two, three, and four point off- 
center interpolations, and are shown below. They are first, second, and third order 
accurate, respectively: 

fl+*=fP-4fl+1-f~) if u < 0, 
(7) 

=re-a-~-ffip-1) if u>O; 

fp+‘=fp- u 2fp,1 -;fP-;fh 
( 1 

+; (f,P,, -2fp,l +.I?) if u (0, 
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if u<O, 

where u = v At/Ax or u = (q/m) E At/Au. These formulae are derived simply by 
fitting straight lines, parabolas, and cubic curves through the given points. In prac- 
tice, the three point scheme seems to be most economical. 

The first scheme (Eq. (7)) models (to first order in Ax, Au and At) the equation 

If jol > Ax/At or iqE/rnj > Au/At, the diffusion coefficients will become negative, and 
the method can be expected to become unstable. (These two stability criteria can 
also be easily derived from a Fourier analysis of the difference equations.) 

Equations (8) and (9) are much more difficult to put into differential equation 
form because the diffusion terms (a2f) cancel out, leaving only terms which are 
second order or higher in Ax, Au, and At, and involve third and higher derivatives 
of J These equations have not been worked out. It is worth pointing out that the 
leap-frog splitting scheme is only of second order in At, so while the four-point 
interpolation may be more accurate than the three-point interpolation, it will not 
increase the overall order of the method over the 3-point scheme. 

It is also worth mentioning the methods which were tried which did not work 
Derivative methods (linear interpolations with the slope of the line determined by 
approximating the derivative) were tried for 2-, 3-, and Cpoint approximations, 
and were found to be unstable. This is not surprising, since they are strictly 
unstable in the periodic or infinite grid case. Also tried were a centered 3-point 
interpolation, and a cubic spline interpolation. The reasons for the failure of these 
methods are less clear. These methods both failed because odd-even modes 
developed in regions where the distribution function was becoming very steep. The 
failure of the cubic spline is probably due to too little diffusion. The odd-even mode 
appeared at exactly the place where diffusion should have been occurring to remove 
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detail too small for the grid to resolve. Since the 4-point interpolation method 
should be more accurate than the 3-point centered method, the failure of the 3- 
point centered method is probably not due to insufficient diffusion, but to its sym- 
metry in a fundamentally asymmetric problem. When the method is used, infor- 
mation can flow both ways with equal ease on the numerical grid, whereas the 
solution being modeled allows information to flow in only one direction. This is 
admittedly an insufficient explanation of the failure of the 3-point centered method, 
but it is a useful hypothesis for future investigation. 

The test particle integrator is the usual leap-frog integrator: 

vP+w=IIP--1/2+ qEP(x) At 

m (11) 

X P+1=XP$yP+~/2Af. (12) 

It is this particle integrator which dictates the use of the splitting scheme for the 
Vlasov integrator. The test particles must stay in step with the distribution function, 
or else significant systematic errors will result. A different Vlasov integrator could 
be used, but it might be difficult to decide what particle integrator would be 
appropriate. This combination of particle and Vlasov integrators is simple, fast, and 
second-order accurate in time. 

As time passes, the test particles on the discontinuity will generally drift apart, 
and new ones must be created to maintain detail. The method used for positioning 
these new particles in the sample implementation is linear bisection between those 
particles which have drifted too far apart. A more sophisticated method could be 
used, such as fitting an ellipse through a set of four particles, but the time and com- 
plexity required make this unattractive; care must be taken to make sure that a 
change of scale will not produce different results, since the x and u axes have dif- 
ferent units. It should also be possible to find some curvature criterion for introduc- 
ing new particles which would introduce them where they would be most needed. 

The charge integrator, which integrates the distribution function in u from the 
boundary of test particles to urnax, uses the trapezoidal rule. The lower limit of 
integration is taken to be the crossing of the line of test particles with any given x- 
grid position. While the maximum spacing of the test particles could be any dis- 
tance, the charge integration routine is simplified if the particles are never more 
than one x-grid cell apart; so, in the sample code, the maximum allowed distance 
between particles is precisely the grid spacing. 

Because of the non-periodic boundary conditions and the limit in velocity, the 
boundary conditions deserve some comment. At the outgoing boundaries (x= 0, 
v < 0 and x = L, u > 0) there are no problems, since all the interpolation methods 
are off-center in the upstream direction; however, at the incoming boundaries 
(x=0, v >O and x= L, u < 0), an interpolation method cannot be used where it 
would need points outside the domain. Therefore, a less accurate interpolation 
method must be used at these boundaries. The effect of this can easily be seen in the 
jump in the ballistic current diagnostic at the left-hand edge in the sample runs 
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(Fig. 3). This effectis certainly removable if it is a problem. An extra column of grid 
points, either used as a guard cell or placed between the first two columns of grid 
points, would probably smooth out the jump. 

The velocity limit at u = f~,,,~~ presents an entirely different problem, and has no 
definitive solution. In the sample code, interpolations which require grid points out- 
side the velocity domain assume an exponential fall-off. This method is apparently 
quite successful, and all but guarantees that the distribution function remains 
positive. It breaks down when any significant dynamics reaches the high velocity 
boundary, but in this case the problem must be rerun with a larger ~i,,~ anyway. 

SAMPLE RUNS 

The results of a sample run with a single particle species are shown in Fig. 3. The 
domain is initially vacuum, and the ends of the domain are shorted. The single 
species (electrons) is injected from the left end starting at t = 0; and it rapidly fills 
the simulation domain. Throughout the simulation up At, which is a function of 
position, is much less than 1. The diagnostics shown are contour plots of phase 
space (the heavy line is the discontinuity marked by the test particles-the dis- 
tribution below this line is non-physical), charge density, and ballistic current den- 
sity. Although it cannot be seen from the snapshots in Fig. 3, this simulated diode 
rapidly comes to a steady state with no overshoot, and no oscillation of the poten- 
tial minimum, in contrast to particle simulations of similar problems [ 1, 8,9]. This 
indicates that the oscillations observed in particle simulations are noise riven 
oscillations (which may nonetheless be quite physical), and not the result of an 
instability. It might be argued that numerical diffusion might wash out such an 
oscillation in the Vlasov simulation, but most of the important changes occur in the 
position of the test particle boundary (which by definition does not diffuse), and 
over a large scale in the distribution function, which should not be strongly affected 
by slight diffusion, The conclusion that the oscillations are noise driven is also sup- 
ported by the roughly l/,,/?? dependence of the noise amplitude noted in [I] 
(where N is the number of particles). 

The steady state solution for this problem can be accurately calculated 
numerically [lo]. The steady-state current, according to theory, should be 9.116 
throughout the simulation domain, so the current diagnostic represents a very sen- 
sitive test of the accuracy of the method. This is the closest approach to a test of 
conservation of momentum that has been tried. Conservation of energy has not 
been tested, nor has any attempt been made to develop a theory for conservation of 
energy and momentum. As can be seen from the final current density plot in Fig. 3, 
the simulation agrees with the theory to within 0.4%. The steady-state electrostatic 
potential (not shown) agrees even more closely than the current density. 

The plots in Fig. 3 also point out the necessity for some numerical diffusion. The 
exact Vlasov solution of this problem contains a wall in the distribution fun&&on at 
the discontinuity (not to be confused with the discontinuity itself), which would go 
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to zero thickness without ever declining in height. Naturally a finite grid simulation 
method cannot cope with this kind of detail, and any interpolation method which 
does not have some diffusion when gradients in phase space become large must lead 
to a numerical instability. (Cubic spline interpolation is unstable, presumably for 
this reason.) Furthermore, this wall becomes physically uninteresting beyond a cer- 
tain point, as the Vlasov equation is spatially averaged to begin with, so only a cer- 
tain scale of detail is relevant. The diffusion allows the wall to fade away with a 
minimum of inaccuracy. 

While the grid cannot support any detail smaller than the grid spacing, the string 
of test particles can. Thus, even though filamentation within the gridded dis- 
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FIG. 3. (a) Results of a sample run: steady state current should be a constant 9.116 according to 
Langmuir’s theory; (b) Results of a sample run (continued). 
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tribution function is smoothed out, the fil,amantation of the discontinuity is still 
observable. This property could conceivably prove to be useful. 

The speed of this method is comparable to the speed of particle methods if one 
considers grid points to be roughly equivalent to particles. The test run shown was 
run on a 129 x 128 grid for 1600 time steps. The total time for the run was 30 s of 
CRAY time. The time for moving and maintaining the test particles on the discon- 
tinuity is about equal to the time required to advance the distibution function when 
there are 64 grid values of velocity. 

Comparison runs were made using the newly developed particle code PD 
(PDW is an acronym for Plasma Device Workshop, a workshop at the University 
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of California, Berkeley during the spring quarter of 1983 for which the code was 
written). Such particle codes have been used extensively, and are well understood 
[ll]. The x grid has 128 grid cells, and the number of particles in the particle 
simulation is roughly three quarters of the number of grid points in the Vlasov 
simulation. PDWl is fully vectorized (running at roughly 2 ps/particle/timestep), 
yet took over 100 s for this comparison run. The results of the particle run are 
shown in Fig. 4, and are in excellent agreement with the Vlasov simulation. The 
inaccuracy of the Vlasov simulation is, however, smaller than the noise level of the 
particle scheme, despite using a quiet loading scheme (bit-reversing) for the particle 
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FIG. 4. (a) Particle code run of problem in Fig. 3, for comparison. (Note that the noise level of the 
final current density is much higher than the inaccuracy of the GASBAG result.) (b) Particle code run 
(continued). 
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run. This is a major advantage in tests of linearized theory in which one wants to 
look at small perturbations of a steady state. 

Figure 5 is a comparison of the total kinetic energy histories of the particle and 
Vlasov runs. Here the particle noise is drastically reduced (since all of the particles 
are summed over), and a systematic deviation can be seen. The particle code is 
probably most accurate here, with the ineaccuracy of the Vlasov method stemming 
from the numerical diffusion near the potential minimum. 

Some runs have been made with two species, both with the Vlasov code, and the 
particle code. Figure 6 shows a pair of such runs for a thermal plasma whit 
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Vlasov Partlcle 
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FIG. 5. Comparison of kinetic energy histories for both GASBAG and PDWl. Note the 3% dif- 
ference between time 0.7 and 1.5. 

eneters from the left-hand wall into a vacuum. The mass ratio is m,/m, = 4, and the 
external circuit is a short. Both simulations show an instability which starts with a 
wavelength roughly the length of the simulation, and then shrinks accordion-style 
to the final state shown with roughly three wavelengths in the simulation. At this 
point, the distribution breaks, forming long filaments around holes in phase space. 
Partial simulations run for longer times show that these filaments become very con- 
volved; however, only a relatively small number of particles are involved, and they 
have little effect on the electric field. The agreement between the two codes is not 
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FIG. 6. Phase space plots of a plasma after expanding into a box from one side, for both Vlasov and 
particle methods. 
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perfect, and many more grid points were needed to get the Vlasov result 
(513 x 128), but the chief virtue of the Vlasov method is the low noise, and not high 
accuracy. If low noise is a must, then it is easier to use a fine mesh Vlasov code to 
get it than to use a huge number of particles. 

SUMMARY 

A method has been developed which allows the use of finite difference grid 
techniques to follow the evolution of non-periodic Vlasov systems having jump dis- 
continuities. The method is numerically stable, fast, and is free of the noise 
problems associated with particle simulation methods. Sample runs were shown to 
be in excellent agreement with both theoretical results, and independent particle 
simulation results. The method is somewhat less flexible than particle methods with 
respect to boundary conditions (it requires boundary conditions which are at most 
slightly perturbed about some steady state), but future work may find ways of 
relaxing this requirement. Most importantly, it allows some problems (e.g., 
linearized and perturbation problems) to be solved which would be washed out by 
noise in a particle simulation. 

The sample code, with documentation, is available from the author. It is designed 
to be run on the National Magnetic Fusion Energy Computer Center CRAY com- 
puters, but should be adaptable to any high speed computer. 
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